Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7243, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538702

RESUMO

This research explores the eco-friendly synthesis of silver nanoparticles (AgNPs) using Cassia occidentalis L. seed extract. Various analytical techniques, including UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX), were employed for comprehensive characterization. The UV-visible spectra revealed a distinct peak at 425 nm, while the seed extract exhibited peaks at 220 and 248 nm, indicating the presence of polyphenols and phytochemicals. High-resolution TEM unveiled spherical and oval-shaped AgNPs with diameters ranging from 6.44 to 28.50 nm. The SEM exhibiting a spherical shape and a polydisperse nature, thus providing insights into the morphology of the AgNPs. EDX analysis confirmed the presence of silver atoms at 10.01% in the sample. XRD results unequivocally confirm the crystalline nature of the AgNPs suspension, thereby providing valuable insights into their structural characteristics and purity. The antioxidant properties of AgNPs, C. occidentalis seed extract, and butylated hydroxytoluene (BHT) were assessed, revealing IC50 values of 345, 500, and 434 µg/mL, respectively. Antibacterial evaluation against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli demonstrated heightened sensitivity of bacteria to AgNPs compared to AgNO3. Standard antibiotics, tetracycline, and ciprofloxacin, acting as positive controls, exhibited substantial antibacterial efficacy. The green-synthesized AgNPs displayed potent antibacterial activity, suggesting their potential as a viable alternative to conventional antibiotics for combating pathogenic bacterial infections. Furthermore, potential biomedical applications of AgNPs were thoroughly discussed.


Assuntos
Nanopartículas Metálicas , Senna (Planta) , Prata/farmacologia , Prata/química , Antioxidantes/farmacologia , Antioxidantes/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/química , Espectrometria por Raios X , Sementes , Difração de Raios X , Escherichia coli , Bacillus subtilis , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Int J Biol Macromol ; 267(Pt 1): 131228, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554923

RESUMO

The extremely low antioxidant, photocatalytic, and antibacterial properties of cellulose limit its application in the biomedical and environmental sectors. To improve these properties, nanohybrides were prepared by mixing carboxylated cellulose nanocrystals (CCNCs) and zinc nitrate hexahydrate. Data from FTIR, XRD, DLS, and SEM spectra showed that, ZnO nanoparticles, with a size ranging from 94 to 351 nm and the smallest nanoparticle size of 164.18 nm, were loaded onto CCNCs. CCNCs/ZnO1 nanohybrids demonstrated superior antibacterial, photocatalytic, and antioxidant performance. More considerable antibacterial activity was shown with a zone of inhibition ranging from 26.00 ± 1.00 to 40.33 ± 2.08 mm and from 31.66 ± 3.51 to 41.33 ± 1.15 mm against Gram-positive and Gram-negative bacteria, respectively. Regarding photodegradation properties, the maximum value (∼91.52 %) of photocatalytic methylene blue degradation was observed after 75 min exposure to a UV lamp. At a concentration of 125.00 µm/ml of the CCNC/ZnO1 nanohybrids sample, 53.15 ± 1.03 % DPPH scavenging activity was obtained with an IC50 value of 117.66 µm/ml. A facile, cost-effective, one-step synthesis technique was applied to fabricate CCNCs/ZnO nanohybrids at mild temperature using Oxytenanthera abyssinica carboxylated cellulose nanocrystals as biotemplate. The result showed that CCNCs/ZnO nanohybrids possess potential applications in developing advanced functional materials for dye removal and antibacterial and antioxidant applications.

3.
Adv Appl Bioinform Chem ; 17: 47-59, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495362

RESUMO

Background: Ajuga integrifolia (Armagusa) is used as a decoction to treat high blood pressure and diabetes, widely in Ethiopia. Specific compounds for anti-hypertension activity were not identified so far. This study aims to provide a scientific basis for the therapeutic use of A. integrifolia as an antihypertension agent. Methods: In silico studies were used to evaluate the antihypertensive components of A. integrifolia. Flavonoids identified using HPLC analysis and iridoid glycosides isolated from A. integrifolia in this study and those isolated from synonyms (A. remota and A. bractosa) were considered in the molecular docking study. Interactions were studied by using Autodock vina (1.2) on PyRx 0.8 and visualizing in 2D and 3D using ligPlot+ and Discovery studio software. Activities like vasoprotection and druglikeness properties were predicted using online servers. Results: Flavonoids such as quercetin, myricetin, and rutin were identified and quantified by HPLC analysis from different extracts of A. integrifolia. Reptoside and 8-O-acetylharpgide isolated from the aerial part of A. integrifolia. The binding energies of all 17 candidates considered in this study range from -10.2 kcal/mol to -7.5 kcal/mol and are lower than enalapril (reference drug: -5.9 kcal/mol). The binding energies, in most case, constitute hydrogen bonding. Biological activity predicted using PASS test also showed that the flavonoids have more probability of activity than the iridoid glycosides. Druglikeness properties of the candidate molecules showed that most follow the Lipinski rule of five with few violations. Conclusion: Lower binding energies involving hydrogen bonding and predicted activities concerning hypertension confirm the traditional use of the aerial part of the medicinal plant concerned. Flavonoids: rutin, myricetin, quercetin, and kaempferol take the leading role in the antihypertensive activity of the aerial part of A. integrifolia. The iridoid glycosides studied are almost similar in their effect on their antihypertensive activity and still better than the reference drug.

4.
Int J Biol Macromol ; 254(Pt 1): 127644, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37879578

RESUMO

This study investigated the effect of adding lignin nanoparticles (LNPs) derived from Oxytenanthera abyssinica via alkali-acid nanoprecipitation method to polyvinyl alcohol/chitosan (PVA/CI) and polyvinyl alcohol/chitin (PVA/CH) films for the active food packaging applications. Adding LNPs at concentrations of 1 % and 3 % improved the films' thermal stability and mechanical properties. The lowest water solubility and moisture content were observed in PVA/CI/LNPs films. LNPs exhibited effective 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities, with the highest values observed in PVA/CH/LNPS and PVA/CI/LNPS films with values of 87.47 and 88.74 % respectively. The addition of LNPs also improved the UV-blocking abilities of the films. PVA/CH/LNP3 and PVA/CI/LNP3 have the smallest percentage transmission values of 3.34 % and 0.86 % in the UV range. The overall migration of dietary stimulants was lower in PVA/CI/LNPS and PVA/CH/LNPS films compared to PVA film. Antibacterial tests demonstrated the inhibitory capacity of the synthesized biofilms against both gram-positive and negative bacterial species, with the highest inhibitory value of 26 mm. The study suggests that PVA/CH/LNPS and PVA/CI/LNPS films have potential applications as active food packaging materials and can be explored in other potential applications such as drug delivery, tissue engineering, wound healing, and slow-release urea fertilizer development.


Assuntos
Anti-Infecciosos , Quitosana , Nanopartículas , Quitosana/química , Lignina/farmacologia , Lignina/química , Quitina , Embalagem de Alimentos/métodos , Álcool de Polivinil/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química
5.
Biomed Res Int ; 2023: 7711297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313550

RESUMO

Background. Nowadays, the immunomodulatory properties of plants have been studied extensively with greater interest due to increasing awareness and combating the severity of immunomodulatory diseases. Scope and Approach. This paper highlights the efficacy of the available literature evidence on natural immunomodulators of plant origin and synthetic ones. In addition, several aspects of plants and their phytoconstituents responsible for immunomodulation have been discussed. Moreover, this review also discusses the mechanism involved in immunomodulation. Key Findings. One hundred fifty medicinal immunomodulatory plants are currently identified to find novel immunomodulatory drugs. Of these plants, the plant family Asteraceae also takes the first rank by offering 18 plant species (12%). Similarly of the plants studied so far, 40% belong to the Asteraceae family. Echinacea purpurea of this family is most known for its immunostimulating activity. The most prominent immune-active bioactive molecules are polyphenols, terpenoids, and alkaloids. Also, eight plant bioactive immunomodulators were checked for clinical trials and found in the market. These are six immunosuppressants, resveratrol, epigallocatechin-3-gallate, quercetin, colchicine, capsaicin, and andrographolide, and two immunostimulants, curcumin and genistein. Nowadays, there are a lot of polyherbal traditional medicinal products sold in the market and claimed to their immunomodulators. However, much work is still needed to find more active immunomodulatory agents. The mechanism by which immunomodulatory medicinal plant exert their effect is through the induction of cytokines and phagocyte cells and the inhibition of iNOS, PGE, and COX-2 synthesis.


Assuntos
Asteraceae , Fatores Imunológicos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Citocinas , Imunossupressores , Agentes de Imunomodulação
6.
Chem Biodivers ; 20(8): e202300249, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37318911

RESUMO

The study presents antioxidant, phytochemical, anti-proliferative, and gene repression activities against Hypoxia-inducible factor (HIF-1) alpha and Vascular endothelial growth factor (VEGF) of Elaeocarpus sphaericus extract. Elaeocarpus sphaericus dried and crushed plant leaves were extracted using water and methanol by ASE (Accelerated Solvent Extraction) method. Total phenolic content (TPC) and total flavonoid content (TFC) were used to measure the extracts' phytochemical activity (TFC). Antioxidant potential of the extracts was measured through DPPH, ABTS, FRAP, and TRP. Methanolic extract of the leaves of E. sphaericus has shown a higher amount of TPC (94.666±4.040 mg/gm GAE) and TFC value (172.33±3.21 mg/gm RE). The antioxidant properties of extracts in the yeast model (Drug Rescue assay) showed promising results. Ascorbic acid, gallic acid, hesperidin, and quercetin were found in the aqueous and methanolic extracts of E. sphaericus at varying amounts, according to a densiometric chromatogram generated by HPTLC analysis. Methanolic extract of E. sphaericus (10 mg/ml) has shown good antimicrobial potential against all bacterial strains used in the study except E. coli. The anticancer activity of the extract in HeLa cell lines ranged from 77.94±1.03 % to 66.85±1.95 %, while it ranged from 52.83±2.57 % to 5.44 % in Vero cell lines at varying concentration (1000 µg/ml-31.2 µg/ml). A promising effect of extract was observed on the expression activity of HIF-1 and VEGF gene through RT-PCR assay.


Assuntos
Antioxidantes , Elaeocarpaceae , Humanos , Antioxidantes/química , Fator A de Crescimento do Endotélio Vascular/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células HeLa , Escherichia coli , Flavonoides/análise , Metanol , Fenóis/farmacologia , Fenóis/análise , Compostos Fitoquímicos
7.
Molecules ; 28(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985842

RESUMO

In East Africa, Dodonaea angustifolia (L.f.) is a well-known medicinal herb. Its leaf is primarily studied in light of its ethnobotanical use. In terms of phytochemistry and biological activity, its flower is not studied. In a prior study, our team looked into phytochemical screening, antioxidant activity, and total phenolic levels. This study aims to compare the profiles and biological activities of the leaf and flower samples of D. angustifolia and to present therapeutic alternatives. The leaf and flower sample powders were extracted with methanol using ultrasound-assisted extraction (UAE). HPTLC profile was obtained using CAMAG-HPTLC equipped with VisionCATS software. Antimicrobial agar well diffusion assay and minimum inhibition concentration (MIC) were determined. The leaf and flower extracts of D. angustifolia showed antibacterial activity with a MIC value of 20 µg/mL against Enterococcus faecalis and Listeria monocytogenes. Similarly, 40 µg/mL was found to be effective against Aspergillus flavus. D. angustifolia flower is a rich source of flavonoids and phenolic acids. Because of its antibacterial properties and profile, which are almost the same, the flower is emerging as a viable option for medicinal alternatives.


Assuntos
Flavonoides , Sapindaceae , Flavonoides/química , Extratos Vegetais/química , Folhas de Planta/química , Flores/química , Antibacterianos/farmacologia , Antibacterianos/análise , Antioxidantes/farmacologia , Antioxidantes/análise
8.
Membranes (Basel) ; 13(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36837731

RESUMO

The need for pulp and paper has risen significantly due to exponential population growth, industrialization, and urbanization. Most paper manufacturing industries use wood fibers to meet pulp and paper requirements. The shortage of fibrous wood resources and increased deforestation are linked to the excessive dependence on wood for pulp and paper production. Therefore, non-wood substitutes, including corn stalks, sugarcane bagasse, wheat, and rice straw, cotton stalks, and others, may greatly alleviate the shortage of raw materials used to make pulp and paper. Non-woody raw materials can be pulped easily using soda/soda-AQ (anthraquinone), organosolv, and bio-pulping. The use of agricultural residues can also play a pivotal role in the development of polymeric membranes separating different molecular weight cut-off molecules from a variety of feedstocks in industries. These membranes range in applications from water purification to medicinal uses. Considering that some farmers still burn agricultural residues on the fields, resulting in significant air pollution and health issues, the use of agricultural residues in paper manufacturing can eventually help these producers to get better financial outcomes from the grown crop. This paper reviews the current trends in the technological pitch of pulp and paper production from agricultural residues using different pulping methods, with an insight into the application of membranes developed from lignocellulosic materials.

9.
Molecules ; 28(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36770779

RESUMO

Shigellosis is one of the major causes of death in children worldwide. Flavonoids and phenolic acids are expected to demonstrate anti-shigellosis activity and anti-diarrheal properties. The aerial part of A. integrifolia is commonly used against diarrhea. This study aimed to identify flavonoids and phenolic acids responsible for this therapeutic purpose. Antioxidant activity, total phenol content, and total flavonoid content were determined. The antibacterial activity of the aerial part against Shigella spp. was also tested using the agar well diffusion method. HPLC analysis was performed using UHPLC-DAD for different extracts of the aerial part. Autodock Vina in the PyRx platform was used to screen responsible components. Ciprofloxacin was used as a reference drug. An enzyme taking part in pyrimidine biosynthesis was used as a target protein. Molecular docking results were visualized using Discovery Studio and LigPlot1.4.5 software. Antioxidant activity, total phenol content, and total flavonoid content are more significant for the aerial part of A. integrifolia. From HPLC analysis, the presence of the flavonoids, quercetin, myricetin, and rutin and the phenolic acids gallic acid, chlorogenic acid, and syringic acid were identified from the aerial part of A. integrifolia. Regarding the antibacterial activity, the aerial part shows considerable activity against Shigella spp. Binding energies, RMSD and Ki values, interaction type, and distance are considered to identify the components most likely responsible for the therapeutic effects and observed activity. Antioxidant activity, total phenol content, and total flavonoid content of the aerial part are in line with anti-shigellosis activity. The top five components that are most likely potentially responsible for therapeutic purposes and anti-shigellosis activity are chlorogenic acid, rutin, dihydroquercetin, dihydromyricetin, and kaempferol.


Assuntos
Ajuga , Antioxidantes , Criança , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Ajuga/química , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Flavonoides/farmacologia , Flavonoides/análise , Fenóis/análise , Fenol , Componentes Aéreos da Planta/química , Rutina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
10.
J Biomol Struct Dyn ; 41(16): 7966-7974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36229232

RESUMO

Colorectal cancer (CRC) is a type of cancer that occurs in the colon or rectum and kills millions of people each year. Steroid hormones are interconverted between their potent, high-affinity forms by using 17-beta hydroxysteroid dehydrogenase for their respective receptors in these tissues, with a high probability of random genetic errors. Currently, 17-beta-HSD1 studies have revealed the role of steroid metabolism in the development and proliferation of colorectal cancer. However, there is little information on how to target this enzyme with either modern medicine or natural products. In this study, we looked at 17-beta-HSD1 as a target for treating CRC development and proliferation using selected plant metabolites from previous studies. Plants are used to produce medicinal and novel bioactive compounds that are used to treat different infection. They primarily demonstrated anti-cancer effects through the regulation of cancer-related proteins, epigenetic factors and reactive oxygenase species. The study utilized Avogadro, ADMET lab 2.0, SWISS-MODEL, AutoDock, and Gromacs. Five lead molecules were chosen from a pool of plant metabolites based on their affinity for the 17-beta-HSD1 enzyme. Furthermore, two bind with high affinity are resveratrol (DG 11.29 kcal/mol) and folate (DG 12.23 kcal/mol) with low Ki values, while the rest binds with moderate affinity. Molecular dynamic simulation results also revealed that the folate-17-beta-HSD complex and reserverol- 17-beta-HSD1 complex maintained a stable conformation until the end of 100 ns. As a result, reserverol and folate could be used as lead molecules to target 17-beta-HSD1 and provide a promising starting point for further in vivo research.Communicated by Ramaswamy H. Sarma.

11.
J Fungi (Basel) ; 8(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36294572

RESUMO

This study aimed at assessing the concentration of six heavy metals (Cd, Cr, Cu, Fe, Mn, and Zn) in two wild edible oyster mushrooms (Pleurotus ostreatus and Pleurotus djamor) collected from Rajaji National Park in Haridwar, India. For this purpose, mushroom samples were collected from selected locations (forest, residential, tourist, industrial areas, and transportation activities) from June 2021 to July 2022 and subsequently analyzed for selected heavy metals using atomic absorption spectroscopy (AAS). Results showed that both Pleurotus spp. had significantly varying (p < 0.05) concentrations of heavy metals. However, P. ostreatus showed relatively higher concentration levels of these metals compared to P. djamor. The mean concentrations (mg/kg dry weight) of the Cd, Cr, Cu, Fe, Mn, and Zn in P. ostreatus and P. djamor were 0.10 and 0.08, 0.87 and 0.64, 16.19 and 14.77, 28.49 and 27.15, 9.93 and 8.73, and 18.15 and 15.76, respectively. As indicated by the multivariate analysis tools i.e., principal component analysis (PCA) and hierarchical cluster analysis (HCA), the locations near the residential, industrial, and transportation activities had higher concentration levels of heavy metals. Moreover, the health risk studies using the target hazard quotient (THQ < 1) showed no significant health risk as the consumption of both Pleurotus spp., except for at one location, had high-traffic activities. The findings of this study provide vital information about the occurrence of potentially toxic heavy metals in wild edible Pleurotus spp. in Rajaji National Park in Haridwar, India representing a safeguard for mushroom consumers.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35990854

RESUMO

Medicinal plants have been treating various ailments and diseases since ancient times. Aquatic and semiaquatic medicinal plants play an essential role in human welfare to fulfill their daily needs. They have shown biological, pharmacological, nutraceutical, and commercial applications. This review aims to collect and update all recent information on ethnomedicinal, phytochemistry, pharmacological activities, and nanoparticle synthesis and their uses in aquatic and semiaquatic medicinal plants. Original research papers, review papers, short communications, and book chapters on aquatic and semiaquatic plants have been retrieved from PubMed, Web of Science, Scopus, and Google Scholar. Keywords, ethnomedicinal studies, phytochemistry, pharmacological activities, and nanoparticle synthesis from aquatic and semiaquatic medicinal plants are used for the search. Different aquatic and semiaquatic medicinal plants belonging to the families Acanthaceae, Alismataceae, Amaranthaceae, Apiaceae, Araceae, Asteraceae, Boraginaceae, Ceratophyllaceae, Cyperaceae, Fabaceae, Hydrocharitaceae, Lythraceae, Marsileaceae, Menyanthaceae, Nelumbonaceae, Nymphaeaceae, Onagraceae, Plantaginaceae, Poaceae, Polygonaceae, Pontederiaceae, Primulaceae, Scrophulariaceae, and Zingiberaceae have been studied. They are rich in alkaloids, flavonoids, terpenoids, phenolics, saponins, tannins, dietary fiber, glycosidic derivatives, carbohydrates, and proteins. These phytochemicals have been used for their antimicrobial, antioxidant, hepatoprotective, sedative, anticonvulsant, cytotoxic, antiparasitic, and antidiabetic activities. Besides this, various parts of the plants are used as dietary supplements and green nanoparticle synthesis. These plants are also known for their commercial value and are used as an ingredient in some pharmaceutical industries.

13.
Artigo em Inglês | MEDLINE | ID: mdl-35832515

RESUMO

Cardiovascular diseases (CVDs) are the world's leading killers, accounting for 30% deaths. According to the WHO report, CVDs kill 17.9 million people per year, and there will be 22.2 million deaths from CVD in 2030. The death rates rise as people get older. Regarding gender, the death rate of women by CVD (51%) is higher than that of men (42%). To decrease and prevent CVD, most people rely on traditional medicine originating from the plant (phytochemicals) in addition to or in preference to commercially available drugs to recover from their illness. The CVD therapy efficacy of 92 plants, including 15 terrestrial plants, is examined. Some medicinal plants well known to treat CVD are, Daucus carota, Nerium oleander, Amaranthus Viridis, Ginkgo biloba, Terminalia arjuna, Picrorhiza kurroa, Salvia miltiorrhiza, Tinospora cordifolia, Mucuna pruriens, Hydrocotyle asiatica, Bombax ceiba, and Andrographis paniculate. The active phytochemicals found in these plants are flavonoids, polyphenols, plant sterol, plant sulphur compounds, and terpenoids. A general flavonoid mechanism of action is to prevent low-density lipoprotein oxidation, which promotes vasodilatation. Plant sterols prevent CVD by decreasing cholesterol absorption in the blood. Plant sulphur compound also prevent CVD by activation of nuclear factor-erythroid factor 2-related factor 2 (Nrf2) and inhibition of cholesterol synthesis. Quinone decreases the risk of CVD by increasing ATP production in mitochondria while terpenoids by decreasing atherosclerotic lesion in the aortic valve. Although several physiologically active compounds with recognized biological effects have been found in various plants because of the increased prevalence of CVD, appropriate CVD prevention and treatment measures are required. More research is needed to understand the mechanism and specific plants' phytochemicals responsible for treating CVD.

14.
Biomed Res Int ; 2022: 1589877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155671

RESUMO

Ethiopia is one of Africa's six plant-rich countries, with around 60% of the plants being indigenous and most of them having medicinal properties. 80% of people in the country use these plants as a primary health care system to tackle different diseases, including cancer. This review is aimed at summarizing the evidence gained from diverse MPs in Ethiopia that have been used ethnobotanically and ethnopharmacologically for treatment of cancer. The primary data sources were Google Scholar, Web of Science, Science Direct, Scopus, PubMed, and other electronic scientific databases. This literature review showed that there are around 200 MPs used as anticancer. Seventy-four herbs, 39 trees, 77 shrubs, and 17 weed/climbers belonging to 56 families have been identified for their ethnobotanical anticancer potential, and 31 species were recognized for their pharmaceutically anticancer activities. The reviewed data also indicated that many Ethiopian MPs had been used to treat breast, lung, blood, and skin cancers and other tumors. Besides, the collected data showed that the leaves (36.76%), roots (27.2%), bark (12.5%), stem (5.1%), and fruit (7.35%) of plants are commonly used for the preparation of anticancer remedies. Among the reported plant species, Euphorbiaceae (10.71%), Acanthaceae (7.14%), and Asteraceae (7.1%) are the most prominent plant families being used to treat cancer ethnobotanically. Phytochemicals such as flavonoids (like xanthone, indirubin, flavopiridol, and silybin), alkaloids (like taxol, vincristine, evodiamine, and berberine), and physalin B, D, and F steroids exhibited anticancer activity on various cancer cell lines. The crude extracts of Aerva javanica, Vernonia leopoldi, Withania somnifera, Kniphofia foliosa, and Catharanthus roseus were powerful anticancer agents with an IC50 value below 10 µg/mL. Although several Ethiopian plants possess anticancer potential, only a limited number of plants are scientifically studied. Therefore, more scientific studies on anticancer MPs should be carried out; it may lead to discovering and isolating cost-effective and safe anticancer drugs.


Assuntos
Antineoplásicos/química , Compostos Fitoquímicos/química , Fitoterapia , Plantas Medicinais/química , Antineoplásicos/farmacologia , Etiópia , Etnofarmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
15.
Medicines (Basel) ; 4(3)2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28930267

RESUMO

Background:Callicarpa macrophylla (Varbenaceae) is a medicinal shrub and is traditionally used in India, China, and South Asia. Methods: The plant material was collected from lower Himalayan region of Uttarakhand in India. The essential oils from three different aerial parts were analyzed by GC-MS. Antioxidant activity, phenolic assay, and various pharmacological activities were determined by using existing methods which are generally practiced widely. Results: Over 51, 53, and 40 compounds were identified in C. macrophylla leaves essential oil (CMLEO), C. macrophylla pre mature seeds and fruits essential oil (CMEO-I) and C.macrophylla mature seeds and fruits essential oil (CMEO-II), respectively. These oils differ in relative contents of major compounds viz; ß-selinene (37.51% in CMLEO, 44.66% in CMEO-I and 57.01% in CMEO-II), phyllocladene (9.76% in CMLEO, 5.80% in CMEO-I and 12.38% in CMEO-II), caryophelline oxide (7.34% in CMLEO, 8.74% in CMEO-I and 5.0% in CMEO-II), 9E-epi-caryophelline (6.23% in CMLEO, 1.27% in CMEO-I and 3.43% in CMEO-II), longipinocarvone (4.96% in CMLEO, 1.17% in CMEO-I and 2.0% in CMEO-II), and 1,8-cineole (2.23% in CMLEO, 3.10% in CMEO-I and 1.62% in CMEO-II). The oils exhibited good in vitro antioxidant activity. The maximum activity was found in CMEO-II with IC50 values 7.37 ± 0.11, 11.49 ± 0.87, 14.59 ± 0.18, 15.66 ± 0.03, and 17.49 ± 0.13 µl/mL. The essential oils showed qualitative and quantitative diversity in the makeup of essential oils constituents. The oils were found to exhibit anti-inflammatory, analgesic, and antipyretic activity on swiss albino mice compared to the standard drugs, viz; ibuprofen, paracetamol and indomethacin. Conclusion: It is inferred from the study that the plant parts can be used scientifically in traditional systems as folk herbal medicine. Furthermore, we have generated a database for future reference and judicious exploitation of these oils from their natural setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...